European Dredging Association Workshop; November 2008

Greenhouse Gas Emissions; Developments at IMO

International Chamber of Shipping

David Tongue

CO₂ Reduction & International Shipping

- Energy Efficiency Design Index
- Ship Efficiency Management Plan
 - Energy Efficiency Operational Index
- Market-based Instruments
 - Compensation/Mitigation Fund
 - Emission Trading

Outcome of MEPC 58 (October 2008)

 Energy Efficiency Design Index (EEDI)

 Ship Efficiency Management Plan (SEMP) and Energy Efficiency Operational Index (EEOD).

Energy Efficiency Design Index (EEDI)

- Will lead to new projects for reducing GHG emissions
- Japanese government target around 30%reduction of new ship design CO² index in 5 years
- Current IHI project for 749GT coastal Product Tanker
 - -Electric propulsion
 - -Contra-rotating propeller
 - -30% reduction propelling power
 - -19% reduction CO²
 - -50% reduction NOx

Ship Efficiency Management Plan (SEMP) and Energy Efficiency Operational Index (EEOD).

- Management tool for all ships
- Introduces best practices and other operational matters
- Presently under industry development
- Improved voyage planning/Weather routing/Just in time/Speed optimisation/Optimised shaft power
- Optimum trim/Optimum ballast/Propeller imersion/Rudder and heading controls/Hull maintenance
- Propulsion system maintenance/Waste heat recovery
- Improved fleet management
- Improved cargo handling (Port)
- Other measures

Guidance on Best Practices for Fuel-Efficient Operation of Ships –Stakeholders involved

Vessel name: Tankship A **Cargo:** 46,000 m. tons fuel oil

Ballast Voyage: No ballast voyage, vessel already on position

Laden Voyage: Load Port: Quebec, Canada Discharge Port: Rotterdam, Holland

Description	Actual		Ideal		Difference
Commence Voyage	08 April 17:38		08 April 17:38		
End of Sea Passage	16 April 07:00	7 D 13 H	18 Apr 22:27	10 D 5 H	
All Fast	23 April 18:25	7 D 11 H	23 Apr 18:25	4 D 19 H	
Sea Passage speed	14.8 knots		11.0 knots		
Bunker Consumption	36.0 tons / day		14.7 tons / day		21.3 tons / day
Bunker Consumed	272.0 tons		150.0 tons		122 tons
Bunker Cost	USD 149,627		USD 82,473		USD 67,154

Combined Saving: 122.0 tons of bunker; USD 67,154; 45% of total bunker cost

This is calculated at the lowest economic speed of 11 kts. It should be noted that even at that speed the vessel would still anchor for almost 5 days awaiting berthing.

Optimum Propeller Considerations

Hull Maintenance

The Future?

David Tongue